Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

P. G. Aravindan, ${ }^{\text {a }}$
V. Rajakannan, ${ }^{\text {a }}$ M. Yogavel, ${ }^{\text {a }}$
D. Velmurugan, ${ }^{\text {a }}$

A. Senthilvelan ${ }^{\text {a }}$ and II-Hawn Suh ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and ${ }^{\text {b }}$ Department of Physics, Chungnam National University, South Korea

Correspondence e-mail: d_velu@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.044$
$w R$ factor $=0.146$
Data-to-parameter ratio $=12.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

3-Phenyl-4a,5-dihydro-1,2,4-triazolo[3,4-b][1,3]benzothiazine

In the crystal structure of the title compound, $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{~S}$, the thiazine ring adopts a boat conformation. The dihedral angle between the triazole and phenyl rings is $34.3(1)^{\circ}$. The packing of the molecule is stabilized by $\pi-\pi$ interactions.

Comment

Triazole derivatives exhibit antimicrobial (Habib et al., 1997), antiviral (Ergen et al., 1996), anti-HIV-1 (Invidiata et al., 1996), antifungal, antimycobacterial and anticonvulsant (Gulerman et al., 1997) activities. Triazole is also a highly potent eosinophilia inhibitor (Naito et al., 1996), fungicide (Croften, 1996) and herbicide (Tada et al., 1995). Some of the benzothiazine derivatives are most active against the Grampositive Bacillus subtilis (Armenise et al., 1991). Triazole derivatives also possesses neuroleptic activities (Grol \& Rollema, 1975). The X-ray crystal structure analysis of the title compound, (I), was carried out as part of our studies on triazole derivatives.

(I)

The $\mathrm{N}-\mathrm{N}, \mathrm{C}-\mathrm{N}$ and $\mathrm{C}-\mathrm{S}$ bond distances in the fused ring system are comparable with those found in a related structure, viz. 3-amino-6,7-dihydro-6-hydroxy-5H-1,2,4-triazolo[3,4-b]$[1,3]$ thiazine (Glowka, 1994). The S1-C1 [1.736 (3) A $], \mathrm{C} 1-$ $\mathrm{N} 1[1.360(4) \AA]$ and $\mathrm{C} 1-\mathrm{N} 3[1.314$ (4) \AA] bond distances clearly reflect the resonance of the thiourea system (Valle et al., 1970). The $\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 2$ angle of $97.5(1)^{\circ}$ suggests that the S atom uses only p-orbitals to form bonds with atom C 1 and C 2. In order to minimize the steric repulsion between the H atoms at C 8 and C 11 , the relevant bond angles, viz. $\mathrm{C} 8-\mathrm{N} 1-$ C 9 and $\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 10$, are widened.

In the title compound, (I) (Fig. 1), the benzene ring (A) is planar, with a maximum deviation of 0.010 (4) \AA for C 5 . The thiazine ring (B) is in a boat conformation, with puckering parameters (Cremer \& Pople, 1975) $q_{2}=0.547$ (2), $Q_{3}=$ -0.054 (3), $Q_{T}=0.549(2), \Phi=124^{\circ}$ and $\theta=96^{\circ}$, and asymmetry parameters (Nardelli, 1983) $\Delta_{S}(\mathrm{C} 8)=0.024$ (1) and $\Delta_{S}(\mathrm{~N} 1-\mathrm{C} 1)=0.030(1)$. Atoms S 1 and C 8 deviate by 0.552 (1) and 0.400 (3) \AA, respectively, from the weighted least-squares plane through the remaining four atoms $\mathrm{C} 1, \mathrm{~N} 1$, C 7 and C 2 . The dihedral angle between the benzene (A), triazole (C) and phenyl (D) rings are: $A / C 38.5$ (1) A / D 70.9 (1) and $C / D 34.3$ (1) ${ }^{\circ}$.

Received 11 March 2003
Accepted 31 March 2003 Online 16 April 2003

Figure 1
The molecular structure, with the atomic numbering scheme. Probability displacement ellipsoids are drawn at the 50% level.

In addition to van der Waals interactions, $\pi-\pi$ interactions are possibly involved to ensure cohesion between the molecules. There is a $\pi-\pi$ interaction between the triazole ring at (x, y, z) and the phenyl ring at $\left(\frac{1}{2}-x,-\frac{1}{2}+y, z\right)$, the centroids of the two rings being separated by 3.531 (2) \AA.

Experimental

The title compound was synthesized by irradiation (254 nm) of 4-(2-chlorobenzyl)-5-phenyl-1,2,4-triazole-3-thione, according to a literature method (Park et al., 1999), using $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{NaOH}$ as solvent. After completion of the reaction, removal of solvent and chromatographic separation on a silica-gel column by elution with a petroleum etherethyl acetate (1:1) mixture afforded the title compound.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{~S}$
$M_{r}=255.33$
Orthorhombic, Pbca
$a=11.5674(15) \AA \AA$
$b=10.1948(19) \AA$
$c=21.433(3) \AA$
$V=2527.5(7) \AA^{3}$
$Z=8$
$D_{x}=1.395 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection
Enraf-Nonius CAD-4 diffractometer $\omega / 2 \theta$ scans
Absorption correction: none
2197 measured reflections
2110 independent reflections
1457 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.015$

> Mo $K \alpha$ radiation Cell parameters from 26 reflections $\theta=5-20^{\circ}$ $\mu=0.24 \mathrm{~mm}^{-1}$ $T=293(2) \mathrm{K}$ Block, colorless $0.46 \times 0.26 \times 0.23 \mathrm{~mm}$ $\theta_{\max }=25.0^{\circ}$ $h=-2 \rightarrow 13$ $k=-2 \rightarrow 12$ $l=-25 \rightarrow 5$ 2 standard reflections every 200 reflections frequency 120 min intensity decay: $<1.5 \%$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.146$
$S=0.88$
2110 reflections
173 parameters
H -atom parameters constrained

Figure 2
A packing diagram of the molecule, viewed down the a axis. $\pi-\pi$ interactions are indicated by dashed lines.

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{S} 1-\mathrm{C} 1$	$1.736(3)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.360(4)$
$\mathrm{S} 1-\mathrm{C} 2$	$1.773(3)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.473(4)$
$\mathrm{N} 1-\mathrm{C} 9$	$1.364(3)$	$\mathrm{N} 2-\mathrm{N} 3$	$1.393(4)$
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 2$	$97.49(14)$	$\mathrm{N} 2-\mathrm{C} 9-\mathrm{N} 1$	$110.0(3)$
$\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 8$	$131.6(2)$	$\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 10$	$125.6(2)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 8$	$123.6(2)$	$\mathrm{C} 9-\mathrm{N} 2-\mathrm{N} 3$	$108.1(2)$

The H atoms were positioned geometrically and were treated as riding on their parent C atoms, with aromatic $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ and other $\mathrm{C}-\mathrm{H}$ distances of $0.97 \AA$,

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997) and PLATON (Spek, 1990); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Financial support from the Department of Science and Technology (DST) and University Grants Commission (UGC), Goverment of India, are gratefully acknowledged.

References

Armenise, D., Trapani, G., Arrivo, V. \& Morlacchi, F. (1991). Farmaco, 46, 1023-1032.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Croften, K. M. (1996). Toxicol. Lett. 84, 155-159.
Enraf-Nonius (1994). CAD-4-PC. Version 1.5. Enraf-Nonius, Delft, The Netherlands.
Ergen, C. N., Ulusoy, N., Capan, G., Sains, G. O. \& Kiraz, M. (1996). Arch. Pharm. (Weinheim), 329, 427-430.
Glowka, M. L. (1994). J. Chem. Crystallogr. 24, 273-276.
Grol, C. J. \& Rollema, H. (1975). J. Med. Chem. 18, 857-861.
Gulerman, N., Rollas, S., Kiraz, M., Ekinci, A. C. \& Vidin, A. (1997). Farmaco, 52, 691-695.
Habib, N. S., Solimon, R., Ashour, F. A. \& El-Taiebi, M. (1997). Pharmazie, 52, 844-847.

organic papers

Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Invidiata, F. P., Simoni, D., Scintu, F. \& Pinna, N. (1996). Farmaco, 51, 659-664. Naito, Y., Akahoshi, F., Takeda, S., Okada, T., Kajii, M., Nishimura, H., Sugiura, M., Fukaya, C. \& Kagitani, Y. (1996). J. Med. Chem. 39, 3019-3020.
Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Park, Y.-T., Jung, C.-H., Wookkim, K. \& Kim, H. S. (1999). J. Org. Chem. 64, 8546-8556.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Tada, S., Hatano, M., Nakayama, Y., Volrath, S., Guyer, D., Ward, E. \& Ohta, D. (1995). Plant Physiol. 109, 153-159.

Valle, G., Gojazzi, G., Busetti, V. \& Mammi, M. (1970). Acta Cryst. B26, 468477.

Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.

